
Audio Units and Audio Codecs
Session 508

Audio Units and Audio Codecs

Craig Keithley
USB and FireWire Technology Evangelist

Audio Codecs

Jeff Moore
Core Audio Engineering

Introduction
•Audio Codecs provide a plug-in mechanism
for encoding and decoding audio data

•Audio Codecs are Components
•In Jaguar, the Audio Converter will use Audio
Codecs as a user-extensible mechanism

Kinds of Audio Codecs
•There are three kinds of Audio Codecs

• Encoders (‘aenc’) transform linear PCM data
into another format

• Decoders (‘adec’) transform other formats
into linear PCM

• Unity codecs (‘acdc’) transform
between variants of the same format
(e.g., a sample rate converter)

Audio Codec Discovery
•Audio Codecs are discovered like other
components using Component Manager routines

 FindNextComponent

•Component, once found, is opened
 OpenAComponent

•The Component is closed when you are done
 CloseComponent

Audio Codec Properties
•Properties provide a means to configure the
transformation performed by an Audio Codec

•The value of a property is an untyped block
of memory whose contents are specified
by the property’s ID

Audio Codec Properties
•Important properties:

kAudioCodecPropertyRequiresPacketDescription

kAudioCodecPropertyPacketFrameSize

kAudioCodecPropertyHasVariablePacketByteSizes

kAudioCodecPropertyMaximumPacketByteSize

Audio Codec Properties
•Important properties:

kAudioCodecPropertyCurrentInputFormat

kAudioCodecPropertyCurrentOutputFormat

kAudioCodecPropertyMagicCookie

Audio Codec States
•Audio Codecs can be in two states, uninitialized
and initialized

• AudioCodecInitialize and AudioCodecUninitialize
 move between the states

•The state transition is when the codec allocates/
releases any resources it needs like buffers
and tables

Audio Codec States
•When the codec is initialized, the parameters
of the transformation cannot be changed

•Properties that depend on the configuration
of the codec, like the maximum packet byte
size, are only valid when the codec is initialized

Audio Codec Data Flow
•Audio Codecs uses a “push then pull” model
for data flow

•Input data is provided using
AudioCodecAppendInputData

• Input data is copied into an internal buffer
• The codec will return how much data
it consumes

• The data must be in full packets if packet
descriptions are required

Audio Codec Data Flow
•Output data is produced using
AudioCodecProduceOutputPackets

• Output is always in full packets of data
• A status code is returned indicating how
much of the request could be satisfied

AudioCodec SDK
•A C++ class library for implementing
Audio Codec components

Demo
Audio Codec SDK

Audio Units

Doug Wyatt
Core Audio Engineering

Introduction: Audio Units
•Functionality and packaging
•Writing an Audio Unit
•Writing an Audio Unit View

Audio Unit Functionality
•Audio signal-processing plug-in
•Optional user interface (view) plug-in
•Any number of input and output
connections (busses)

•Pull model allows complex graphs
(see AUGraph)

•Operates on 32-bit floating point buffers

Audio Unit Packaging
•Component bundle

• Can contain resources
•Discover

FindNextComponent

•Open
OpenAComponent

•Close
CloseComponent

First Steps
•Determine numbers of input and output busses
•Each bus can be mono or multi-channel

• 10.1 (current): Interleaved
• Version 2, multi-channel busses
are deinterleaved

•Choose an appropriate C++ base class
from the SDK

SDK Class Hierarchy
AUBase

AUEffectBase

AUInlineEffectBase

AUConverterBase

AUOutputBase

MusicDeviceBase

AUElementAUBase AUScope

AUBase

•Translates component entry selectors and get/set
property calls into C++ virtual methods

•Manages scopes (input, output, global)
and elements

•Handles a significant amount of other
housekeeping

AUEffectBase AUKernelBase

AUBase

AUEffectBase

•1 bus (element) in, 1 bus out, each with same
number of channels

•Creates a “kernel” object per channel
•Default Render() implementation calls kernels
to process in mono for each channel

AUInlineEffectBase

•Use this if your DSP can operate on samples
in place

• Provides cache efficiency

AUInlineEffectBase

AUEffectBase AUKernelBase

AUBase

AUConverterBase AudioConverter

AUBase

AUConverterBase

•Typical uses
• Sample rate conversion
• Interleaving/deinterleaving
• Channel mapping

AUOutputBase

AUConverterBase

AUBase

AUOutputBase

•Used for terminal nodes in graphs
• E.g., hardware output units, file writers

•Supports Start and Stop methods
•Provides format conversion between a canonical
float format and a hardware or file format

MusicDeviceBase

•Implements Music Device selectors
• MIDI events
• Extended note and control events

•Renders audio output like any other AudioUnit
•Use for soft synths

MusicDeviceBase

AUBase

AUElement

•Audio Unit API refers to elements within scopes
•Managed by AUBase, but you can subclass them
to store state per input/output

•Manages parameters and stream formats

AUScope AUElementAUBase

AUInputElement

•Obtains input from upstream Audio Unit
or a client callback function

AUInputElement

AUElement

AUOutputElement

•Maintains buffers for caching output
(to support fan-out connections)

AUOutputElement

AUElement

Demo
Writing an Effect

AudioUnit V2
•Component description changes
•Different data structure passed
in rendering process

Component
Description Differences
•V1 (10.1)

• ‘aunt’ component type, and multiple
required subtypes

•V2
• Multiple component types:

• ‘aufx’, ‘auou’, ‘aumd’
• Leaves manufacturer and sub-type available
for your use

• May have recommendations for sub-type usage

Differences in Rendering
•V1

• Interleaved buffers for multichannel streams,
in AudioBuffer structure

•V2
• Deinterleaved buffers, in AudioBufferList

• AudioBufferList contains N AudioBuffers
•Affects:

• RenderSlice becomes Render
• Render notification and input procs change
accordingly

Deinterleaved–Why?
•You asked, we listened
•Much existing DSP code uses deinterleaved buffers
•Improved cache efficiency for many algorithms
•Simpler to optimize for multichannel
and complex signal chain assembly

Implications of Changes–AUs
•Do not feel compelled to support V1 API

• New Apple units after Jaguar will only
be published with new component types

•To support both V1 and V2 in your AudioUnit,
use component aliases to have two component
descriptions

• AUEffectBase and AUConverterBase provide
support for both APIs

• Other AUBase subclasses need to do more
work to support both

Implications of Changes–Clients
•Can not mix V1 and V2 types in a graph

• Would get stream format mismatches
•Client API changes to use AudioBufferList
instead of AudioBuffer

• AudioUnitRender replaces
 AudioUnitRenderSlice

• Render and input callbacks have different
signatures

AudioUnitCarbonView
•UI for an Audio Unit
•Also a component; Apple supplies generic view
•Audio Unit can specify, via a property, one or
more view components that know how to
control it

•Creates a Carbon user pane
• Can contain controls or a custom UI
• Uses Carbon Events

•Here too we supply a small C++ framework

AudioUnitCocoaView?
•We are working on it, but post-Jaguar
•Tricky issues of invoking Carbon views
from Cocoa and vice versa

• Want to make this transparent to the app

AUCarbonViewBase
•Handles the single-selector component interface:
 AudioUnitCarbonViewCreate(
AudioUnitCarbonView inView,
AudioUnit inAudioUnit,
WindowRef inWindow,
ControlRef inParentControl,
const Float32Point * inLocation,
const Float32Point * inSize,
ControlRef * outControl);

•Manages binding of controls to parameters

Parameter Listeners
•Mechanism for receiving notifications
when Audio Unit parameter values change

• AUParameterListener

•Call AUParameterSet instead
of AudioUnitSetParameter

•One listener can listen to multiple parameters
•See AudioToolbox/AudioUnitUtilities.h

Demo
Writing An AudioUnitCarbonView

Conclusion
•SDK base classes will support both versions
of the API

• So no reason not to start writing
AudioUnits now

•Thanks for your feedback; please continue

Roadmap

Room J
Fri., 3:30pm
Room J

Fri., 3:30pm
FF014 Audio and MIDI:
Question and Answer Forum

Room J
Wed., 3:30pm

Room J
Wed., 3:30pm

502 Core Audio Technologies Room J
Tue., 2:00pm

Room J
Tue., 2:00pm

507 Audio and MIDI:
Using the Audio HAL and Core MIDI Services

Room A2
Fri., 3:30pm
Room A2

Fri., 3:30pm

607 QuickTime and MPEG-4:
Short Overview of AAC

Who to Contact
Craig Keithley
USB and FireWire Technology Evangelist
Keithley@apple.com

http://developer.apple.com/wwdc2002/urls.html

For More Information
•Core Audio Developer Services
•Mailing List—Core Audio API

http://lists.apple.com/

•SDKs
http://developer.apple.com/audio/

Q&A

Craig Keithley
USB & FireWire Technology Evangelist

keithley@apple.com

http://developer.apple.com/wwdc2002/urls.html

© 2001 and TM Apple Computer, Inc. All rights reserved.

© 2001 and TM Apple Computer, Inc. All rights reserved.

© 2001 and TM Apple Computer, Inc. All rights reserved.

